A Krylov Method for the Delay Eigenvalue Problem
نویسندگان
چکیده
The Arnoldi method is currently a very popular algorithm to solve large-scale eigenvalue problems. The main goal of this paper is to generalize the Arnoldi method to the characteristic equation of a delay-differential equation (DDE), here called a delay eigenvalue problem (DEP). The DDE can equivalently be expressed with a linear infinite dimensional operator whose eigenvalues are the solutions to the DEP. We derive a new method by applying the Arnoldi method to the generalized eigenvalue problem (GEP) associated with a spectral discretization of the operator and by exploiting the structure. The result is a scheme where we expand a subspace not only in the traditional way done in the Arnoldi method. The subspace vectors are also expanded with one block of rows in each iteration. More importantly, the structure is such that if the Arnoldi method is started in an appropriate way, it has the (somewhat remarkable) property that it is in a sense independent of the number of discretization points. It is mathematically equivalent to an Arnoldi method with an infinite matrix, corresponding to the limit where we have an infinite number of discretization points. We also show an equivalence with the Arnoldi method in an operator setting. It turns out that with an appropriately defined operator over a space equipped with scalar product with respect to which Chebyshev polynomials are orthonormal, the vectors in the Arnoldi iteration can be interpreted as the coefficients in a Chebyshev expansion of a function. The presented method yields the same Hessenberg matrix as the Arnoldi method applied to the operator.
منابع مشابه
Eigenvalue Assignment Of Discrete-Time Linear Systems With State And Input Time-Delays
Time-delays are important components of many dynamical systems that describe coupling or interconnection between dynamics, propagation or transport phenomena, and heredity and competition in population dynamics. The stabilization with time delay in observation or control represents difficult mathematical challenges in the control of distributed parameter systems. It is well-known that the stabi...
متن کاملGeneralizations of an Inverse Free Krylov Subspace Method for the Symmetric Generalized Eigenvalue Problem
OF DISSERTATION
متن کاملNleigs: a Class of Robust Fully Rational Krylov Methods for Nonlinear Eigenvalue Problems∗
A new rational Krylov method for the efficient solution of nonlinear eigenvalue problems, A(λ)x = 0, is proposed. This iterative method, called fully rational Krylov method for nonlinear eigenvalue problems (abbreviated as NLEIGS), is based on linear rational interpolation and generalizes the Newton rational Krylov method proposed in [R. Van Beeumen, K. Meerbergen, and W. Michiels, SIAM J. Sci....
متن کاملIfeast
The FEAST eigenvalue algorithm is a subspace iteration algorithm that uses contour integration in the complex plane to obtain the eigenvectors of a matrix for the eigenvalues that are located in any user-defined search interval. By computing small numbers of eigenvalues in specific regions of the complex plane, FEAST is able to naturally parallelize the solution of eigenvalue problems by solvin...
متن کاملDeflation by Restriction for the Inverse-free Preconditioned Krylov Subspace Method
A deflation by restriction scheme is developed for the inverse-free preconditioned Krylov subspace method for computing a few extreme eigenvalues of the definite symmetric generalized eigenvalue problem Ax = λBx. The convergence theory for the inverse-free preconditioned Krylov subspace method is generalized to include this deflation scheme and numerical examples are presented to demonstrate th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 32 شماره
صفحات -
تاریخ انتشار 2010